Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Gradient Descent vs Evolution | How Neural Networks Learn или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Explore two learning algorithms for neural networks: stochastic gradient descent and an evolutionary algorithm known as a local search. They fundamentally solve the same problem in similar ways, but one has the advantage. Step-by-step they find a way down Loss Mountain. Watch real neural networks maximize the fitness of curve fitting. We've got Dogson here! Special thanks to Andrew Carr(https://x.com/andrew_n_carr) and Josh Greaves for reviewing this with their human neurons, and to the artificial neurons of Grok, o3 mini, and claude. Grok thought the gay joke was funny, o3 thought it wasn't inclusive lol. it is inclusive! ~Webtoys~ Hill Climbers: https://neuralpatterns.io/hill_climbe... Neuron Tuner: https://neuralpatterns.io/nn_tuner.html Subscribe to my music guy NOW: / @acolyte-compositions ~Links~ Patreon: / emergentgarden Kofi: https://ko-fi.com/emergentgarden My Twitter: / max_romana My Bluesky: https://bsky.app/profile/emergentgard... My Other NN videos: • Neural network Learns Webtoy Source: https://github.com/MaxRobinsonTheGrea... Animation Source: https://github.com/MaxRobinsonTheGrea... Image Approximators: https://github.com/MaxRobinsonTheGrea... FUNCTIONS DESCRIBE THE WORLD: • On Mathematical Maturity (1) Thomas G... Dawkins Climbing Mount Improbable: • Richard Dawkins demonstrates the evol... But he's gay: • Gay Mount Everest ~Citations~ Unfortunately many of these are behind paywalls NNs are Universal Function Approximators: https://www.cs.cmu.edu/~epxing/Class/... Backpropagation: https://www.nature.com/articles/323533a0 Loss Surfaces of MLPs: https://arxiv.org/abs/1412.0233 ~Timestamps~ (0:00) Learning Learning (1:20) Neural Network Space (3:40) The Loss Landscape (7:21) The Blind Mountain Climber (8:37) Evolution (Local Search) (13:07) Gradient Descent (18:40) The Gradient Advantage (20:48) The Evolutionary (dis)advantage