Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно RANDOM FOREST CLASSIFICATION-MATLAB (with Complete Code & Data) или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Check this link to know more about fitensemble: https://in.mathworks.com/help/stats/f... Prerequisite: • Random Forest Classifier and Regressor (In... Dataset: https://github.com/SatadruMukherjee/D... Decision Tree Classifier Code: clc clear all close all warning off data=readtable('study_data.csv'); k=["High","Low"]; l=[1,0]; g=data.knowledge_level; number=zeros(length(g),1); for i=1:length(k) rs=ismember(g,k(i)); number(rs)=l(i); end data.category_encoded=number; data.knowledge_level=[]; cv = cvpartition(size(data,1),'HoldOut',0.3); idx = cv.test; dataTrain=data(~idx,:); dataTest=data(idx,:); testing=dataTest(1:end,1:end-1); model=fitctree(dataTrain,'category_encoded'); prediction=predict(model,testing); ms=(sum(prediction==table2array(dataTest(:,end)))/size(dataTest,1))*100 e=min(data.x___repetition_time):0.01:max(data.x___repetition_time); f=min(data.study_time):0.01:max(data.study_time); [x1 x2]=meshgrid(e,f); x=[x1(:) x2(:)]; ms=predict(model,x); gscatter(x1(:),x2(:),ms,'cy'); hold on; gscatter(dataTrain.x___repetition_time,dataTrain.study_time,dataTrain.category_encoded,'rg','.',30); Random Forest Code: clc clear all close all warning off data=readtable('study_data.csv'); k=["High","Low"]; l=[1,0]; g=data.knowledge_level; number=zeros(length(g),1); for i=1:length(k) rs=ismember(g,k(i)); number(rs)=l(i); end data.category_encoded=number; data.knowledge_level=[]; cv = cvpartition(size(data,1),'HoldOut',0.3); idx = cv.test; dataTrain=data(~idx,:); dataTest=data(idx,:); testing=dataTest(1:end,1:end-1); model=fitensemble(dataTrain,'category_encoded','Bag',100,'Tree','Type','classification'); prediction=predict(model,testing); ms=(sum(prediction==table2array(dataTest(:,end)))/size(dataTest,1))*100 e=min(data.x___repetition_time):0.01:max(data.x___repetition_time); f=min(data.study_time):0.01:max(data.study_time); [x1 x2]=meshgrid(e,f); x=[x1(:) x2(:)]; ms=predict(model,x); gscatter(x1(:),x2(:),ms,'cy'); hold on; gscatter(dataTrain.x___repetition_time,dataTrain.study_time,dataTrain.category_encoded,'rg','.',30); Learn Complete Machine Learning & Data Science using MATLAB: • Data Science & Machine Learning using MATLAB Learn Digital Signal Processing using MATLAB: • Digital Signal Processing Matlab Learn Complete Image Processing & Computer Vision using MATLAB: • Digital Image Processing using MATLAB 🙏🙏🙏🙏🙏🙏🙏🙏 YOU JUST NEED TO DO 3 THINGS to support my channel LIKE SHARE & SUBSCRIBE TO MY YOUTUBE CHANNEL #MachineLearning #MATLAB #DataScience #RandomForest