Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Implicit generative models: dual and primal approaches или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Iliya Tolstikhin - Postdoc, Max Planck Institute for Intelligent Systems, Tübingen, Germany The fields of unsupervised generative modelling and representation learning are rapidly growing. Empirical success of recently introduced methods, including Variational Auto-Encoders (VAE) and Generative Adversarial Nets (GAN), attracts attention many researchers working in various areas of Machine Learning. Last few years led to unprecedented amount of papers, trying to improve the performance of VAEs/GANs, introducing new versions of these algorithms, and coming up with completely new ideas. In this talk I will try to present a unifying view on many of the existing methods, showing that VAEs/GANs are approaching very similar objectives -- f-divergences, integral probability metrics, optimal transports -- from their primal/dual formulations respectively. I will discuss certain consequences of this duality and mention a recent work on optimal transport, establishing interesting links between VAEs/GANs.