Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Replacing Strings in Dataframe with Column Names in R или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Learn how to efficiently replace strings in a dataframe with corresponding column names in R using dplyr pipelines. This step-by-step guide simplifies the process. --- This video is based on the question https://stackoverflow.com/q/73495441/ asked by the user 'Roel' ( https://stackoverflow.com/u/10856356/ ) and on the answer https://stackoverflow.com/a/73495563/ provided by the user 'Onyambu' ( https://stackoverflow.com/u/8380272/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Replacing strings in dataframe with column name in R Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- How to Replace Strings in Dataframe with Column Names in R In the world of data analysis, the ability to manipulate data efficiently is essential. One common task is replacing specific values in a dataframe with corresponding column names. In this guide, we’ll explore how to transform time values in a dataframe using R by replacing them with the relevant column names. If you're familiar with R or working with dataframes, this guide will provide you with a clear method to achieve that using the tidyverse package. The Problem Imagine you have a dataframe that tracks production orders, with the columns indicating various production steps and resources used. Each cell contains timestamps representing when a particular resource was utilized. For analysis purposes, you want to replace these timestamps with the corresponding column names, simplifying your data representation. Also, you wish to eliminate any NA values in the output. Here’s the original dataframe structure (including time values): [[See Video to Reveal this Text or Code Snippet]] Your desired output should look like this: [[See Video to Reveal this Text or Code Snippet]] Step-by-Step Solution 1. Load the Tidyverse Package First, make sure you have the tidyverse package installed and loaded, as it includes functions needed for the data manipulation. [[See Video to Reveal this Text or Code Snippet]] 2. Use the mutate and across Functions You can achieve the replacement using the following code. The mutate function alters the dataframe, while across applies a function to multiple columns: [[See Video to Reveal this Text or Code Snippet]] In this code: where(is.character) specifies to apply the change to character columns. ifelse(is.na(.x), '', cur_column()) checks for NA values, replacing them with an empty string, and substitutes the value in non-NA cells with the current column name. 3. Optional: Reshape the Data for Clarity If you want to reshape your data using pivot_longer and pivot_wider, you can do so as follows. This method is particularly helpful if you prefer a more dynamic approach: [[See Video to Reveal this Text or Code Snippet]] pivot_longer transforms your data from wide to long format. mutate replaces values analogous to the previous method. pivot_wider reverts the data back to a wide format with the new values. Final Output After executing either of the above methods, you should have a dataframe resembling your desired format: [[See Video to Reveal this Text or Code Snippet]] This output effectively replaces the timestamps with the appropriate column names, providing a cleaner and more usable dataframe for your analysis. Conclusion In the realm of data manipulation with R, replacing strings in a dataframe can be straightforward, especially using the tidyverse package. This guide showed you how to replace timestamps with corresponding column names while eliminating NA values, helping to enhance the clarity and usability of your data. Remember, these techniques not only streamline your analysis process but also improve the overall readability of your results. By understanding and applying these methods, you can efficiently handle data transformations in R, setting you up for successful and impactful data analysis.