Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно How to Concatenate Pandas DataFrames without Doubling Columns and Fixing the Index или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Learn how to effectively concatenate pandas DataFrames while maintaining unique columns and a clean index. --- This video is based on the question https://stackoverflow.com/q/74450056/ asked by the user 'Leb_Broth' ( https://stackoverflow.com/u/3340234/ ) and on the answer https://stackoverflow.com/a/74450167/ provided by the user 'BeRT2me' ( https://stackoverflow.com/u/11865956/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Concatenate dataframes without doubling columns number Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- How to Concatenate Pandas DataFrames without Doubling Columns and Fixing the Index In the world of data analysis, especially when using Python's powerful pandas library, combining datasets is a common task. However, many users run into issues of duplicated columns and non-incremental indices when trying to concatenate DataFrames. The Challenge You might find yourself in a situation where you need to concatenate two DataFrames, DF1 and DF2, for example: DF1: [[See Video to Reveal this Text or Code Snippet]] DF2: [[See Video to Reveal this Text or Code Snippet]] When you attempt to concatenate these DataFrames using: [[See Video to Reveal this Text or Code Snippet]] You might observe unwanted duplications and NaN values in your output: [[See Video to Reveal this Text or Code Snippet]] This occurs because: Column Names Misalignment: The DataFrames may have some columns named as integers in one and as strings in the other. Improper Index Handling: The row indices may not be re-incremented properly, leading to duplicates. The Solution To overcome these issues, follow these easy steps: Step 1: Align Column Names Make sure that the column names in both DataFrames are of the same type. If necessary, convert all column names to strings. Here’s how you can do it: [[See Video to Reveal this Text or Code Snippet]] Step 2: Concatenate with Correct Index Handling Use the ignore_index=True parameter during concatenation to ensure that the indices are reset and do not carry over any conflicts from the original DataFrames: [[See Video to Reveal this Text or Code Snippet]] Step 3: Verify the Output After applying the above steps, when you print the concatenated DataFrame, you should see: [[See Video to Reveal this Text or Code Snippet]] Conclusion By ensuring that your DataFrame columns are consistently named and properly managing index handling during concatenation, you can effectively combine your datasets without running into the hassle of duplicated columns or misaligned indices. Follow these steps the next time you process your data with pandas, and enjoy a smoother workflow! Now, go ahead and apply these techniques to make your data analysis tasks easier and more efficient!