Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно How to Concatenate DataFrames with Duplicate Column Names in Python Pandas или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
A complete guide on how to effectively handle and concatenate Pandas DataFrames that contain duplicate column names, ensuring you maintain accurate data by renaming duplicates. --- This video is based on the question https://stackoverflow.com/q/72724770/ asked by the user 'younghyun' ( https://stackoverflow.com/u/16396496/ ) and on the answer https://stackoverflow.com/a/72724867/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to concat two dataframes with duplicate column names? Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- How to Concatenate DataFrames with Duplicate Column Names in Python Pandas When working with Pandas in Python, it’s common to encounter situations where DataFrames have duplicate column names. This can lead to complications when attempting to concatenate them. If you’ve ever faced this issue, you’ll appreciate understanding how to manage duplicate column names effectively. In this post, we’ll explore a straightforward solution to concatenate DataFrames, even with duplicate names. Understanding the Problem Consider you have two DataFrames, df1 and df2, with the following characteristics: df1 contains duplicate column name a df2 does as well with the same column name Example structure of each DataFrame: [[See Video to Reveal this Text or Code Snippet]] If you attempt to concatenate df1 and df2 directly, it will lead to a failure due to the duplicate column names. The challenge lies in manipulating these column names before concatenation so that they remain distinct. Step-by-Step Solution Step 1: Modify Column Names First, we need to rename the duplicate columns in both DataFrames. The idea is to append a suffix to duplicates based on their position to make them unique. Rename Columns for df1 [[See Video to Reveal this Text or Code Snippet]] Rename Columns for df2 [[See Video to Reveal this Text or Code Snippet]] Step 2: Concatenate the DataFrames With the newly renamed columns, you can now concatenate the DataFrames without any issues. [[See Video to Reveal this Text or Code Snippet]] Expected Output After this process, the resultant DataFrame will look like this: [[See Video to Reveal this Text or Code Snippet]] Alternative Approach to Rename Columns If you prefer a different naming convention, you can also employ the groupby approach to achieve unique names: Modify Columns with Groupby Count [[See Video to Reveal this Text or Code Snippet]] Final Concatenation [[See Video to Reveal this Text or Code Snippet]] Final Structure This will yield the DataFrame: [[See Video to Reveal this Text or Code Snippet]] Conclusion Handling duplicate column names when concatenating DataFrames in Pandas can be a common challenge, but with the right methods, it’s manageable. By renaming the columns before the concatenation process, you can preserve the integrity of your data. Whether you prefer appending labels based on positions or using grouping techniques, both methods work effectively to ensure a smooth concatenation process. Remember, effective data manipulation is key to successful data analysis!