Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Robots downloading Skills (Like in the Matrix!) или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
This episode features Dr. Maxwell Ramstead and Jason Fox both from Noumenal discussing why current AI approaches fall short for real-world applications and what's needed for true physical AI. The guests argue that today's AI systems, including large language models, are fundamentally "stuck in data space" - they only process patterns in data rather than understanding the physical world that generates that data. Maxwell uses Plato's Cave as a powerful metaphor: like prisoners seeing only shadows on a wall, LLMs interact with representations of reality (text, images) rather than reality itself. Rather than building monolithic models, Noumenal is creating a compositional system - essentially a "marketplace of models" where specialized AI components can be dynamically combined and deployed to robots. Sponsor messages: ======== Tufa AI Labs are hiring for ML Engineers and a Chief Scientist in Zurich/SF. They are top of the ARCv2 leaderboard! https://tufalabs.ai/ ======== https://www.noumenal.ai/ https://x.com/mjdramstead https://scholar.google.ca/citations?u... https://x.com/jasongfox?lang=en-GB TOC Opening & Context 00:00:00 - Opening Hook: Why Create a Physical AI Company? 00:01:59 - Sponsor: Tufa AI Labs 00:02:30 - Guest Introductions: Maxwell Ramstead & Jason Fox 00:05:18 - Noumenal Background Core Problems with Current AI 00:09:30 - The Embodiment Problem: Why Bodies Matter 00:10:15 - LLMs Lack Physical Grounding 00:12:00 - AI Stuck in Plato's Cave 00:16:15 - Language as Wrong Compression for Physics 00:17:22 - The Exhaustion of Static Datasets 00:19:54 - Humans as the Grounding for LLMs Philosophical Foundations 00:28:00 - Fractured vs. Deep Understanding 00:32:15 - Defining "Real": When You Bump Into Things 00:37:00 - Emergence: Weak vs. Strong Causal Power 00:41:45 - The Free Energy Principle Explained 00:44:15 - Constraints: How the Universe Builds Things Objects, Intelligence & Grounding 00:46:15 - What Is an Object? From Data to Physics 00:51:00 - Learning Primitives & Predictive Grip 00:55:58 - "There Is No General Intelligence" 01:00:15 - The Human-AI Feedback Loop 01:03:08 - The Irony of LLM Specialization 01:06:05 - LLMs as Tools vs. Autonomous Agents 01:08:45 - Hallucinating Capabilities: The Third Leg Problem The Noumenal Solution 01:09:00 - A Marketplace of Specialized Models 01:13:45 - Dynamic Skill Loading: "Phone a Friend" 01:16:15 - Learning from Brain Evolution 01:18:00 - Business Model Critique: Why OpenAI Won't Work 01:22:30 - The Physical Dataset Problem Implementation & Future 01:22:30 - Community-Driven Data Collection 01:24:45 - Jim Fan's Physical Turing Test 01:26:30 - Enterprise vs. Consumer Models 01:27:22 - Docker for Robotics: The Technical Architecture 01:30:12 - Reproducibility in Learning Systems 01:32:00 - Closing Thoughts