Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно How to Replace All False Values in DataFrame Columns with Values from Another DataFrame или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Learn how to efficiently replace `False` values in your DataFrame columns using Python's Pandas. This guide provides step-by-step instructions and easy-to-follow code examples. --- This video is based on the question https://stackoverflow.com/q/74156843/ asked by the user 'Константин Прудников' ( https://stackoverflow.com/u/10703239/ ) and on the answer https://stackoverflow.com/a/74157290/ provided by the user 'Nuri Taş' ( https://stackoverflow.com/u/19255749/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to replace all "False" values in any columns by values from other columns with the same names if that values are not False Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- How to Replace All False Values in DataFrame Columns with Values from Another DataFrame When working with data in Python, especially with the Pandas library, you may encounter situations where you need to clean or transform your data. One common challenge is dealing with False values in a DataFrame that you would like to replace with appropriate values from another DataFrame. In this guide, we'll walk you through a solution using Pandas, providing clear explanations and code snippets to guide you. The Problem Statement Imagine you have two DataFrames: one contains data with some False values, and the other contains replacement values. The goal is to replace all instances of False (or other specified invalid values) in specific columns of the first DataFrame with values from the second DataFrame based on a common key column. Example DataFrames Let's start by examining the sample DataFrames: [[See Video to Reveal this Text or Code Snippet]] In this example, we want to merge these DataFrames on the n column and replace values in columns a and b of dc1 with values from dc2 if they are False or any predefined list of "invalid" values. The Solution Step 1: Identify Invalid Values To begin, we need to specify which values we consider invalid. For this problem, we'll use the following list of values: [[See Video to Reveal this Text or Code Snippet]] Step 2: Merging the DataFrames Next, we can merge the two DataFrames on the n column. This step will prepare our DataFrame for replacement. Step 3: Replace Invalid Values Now comes the core of our solution. We will use the isin() method to identify which cells in columns a and b of dc1 hold values from our replace_list. Then, we'll use np.where() to perform the replacement. Here's the implementation: [[See Video to Reveal this Text or Code Snippet]] Final Result After executing the above code, we will achieve the desired result: [[See Video to Reveal this Text or Code Snippet]] Conclusion In summary, we've successfully tackled the problem of replacing False values in a DataFrame's columns with values from another DataFrame. By following this method, you can efficiently clean and prepare your data for analysis. Remember, understanding how to manipulate and clean your data is crucial for effective data analysis in Python using Pandas. By using the techniques outlined in this guide, you can handle similar challenges with ease in your data analysis projects.