Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно WACV18: A Simple yet Effective Model for Zero-Shot Learning или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Xi Hang Cao, Zoran Obradovic, Kyungnam Kim Zero-shot learning has tremendous application value in complex computer vision tasks, e.g. image classification, localization, image captioning, etc., for its capability of transferring knowledge from seen data to unseen data. Many recent proposed methods have shown that the formulation of a compatibility function and its generalization are crucial for the success of a zero-shot learning model. In this paper, we formulate a softmax-based compatibility function formulation, and more importantly, propose a regularized empirical risk minimization objective to optimize the function parameter which leads to a better model generalization. In the comparisons to eight baseline models on four benchmark datasets, our model achieved the highest average ranking. Our model was effective even when the training set size was small and significantly outperforming an alternative state-of-the-art model in generalized zero-shot recognition tasks.