Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Backpropagation and the brain или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Geoffrey Hinton and his co-authors describe a biologically plausible variant of backpropagation and report evidence that such an algorithm might be responsible for learning in the brain. https://www.nature.com/articles/s4158... Abstract: During learning, the brain modifies synapses to improve behaviour. In the cortex, synapses are embedded within multilayered networks, making it difficult to determine the effect of an individual synaptic modification on the behaviour of the system. The backpropagation algorithm solves this problem in deep artificial neural networks, but historically it has been viewed as biologically problematic. Nonetheless, recent developments in neuroscience and the successes of artificial neural networks have reinvigorated interest in whether backpropagation offers insights for understanding learning in the cortex. The backpropagation algorithm learns quickly by computing synaptic updates using feedback connections to deliver error signals. Although feedback connections are ubiquitous in the cortex, it is difficult to see how they could deliver the error signals required by strict formulations of backpropagation. Here we build on past and recent developments to argue that feedback connections may instead induce neural activities whose differences can be used to locally approximate these signals and hence drive effective learning in deep networks in the brain. Authors: Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman & Geoffrey Hinton Links: YouTube: / yannickilcher Twitter: / ykilcher BitChute: https://www.bitchute.com/channel/yann... Minds: https://www.minds.com/ykilcher