Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Discovery of Algorithms & Neural Architectures in Scientific ML, George Karniadakis, Brown Univ. или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Title: Automatic Discovery of Algorithms and Neural Architectures in Scientific Machine Learning Speaker: George Karniadakis is from Crete. He is a member of the National Academy of Engineering and a Vannevar Bush Faculty Fellow. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continued to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the SES GI Taylor Medal (2024), the SIAM/ACM Prize on Computational Science & Engineering (2021), the Alexander von Humboldt award in 2017, the SIAM Ralf E Kleinman award (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 148 and he has been cited over 120,000 times. Abstract: We will first review deep neural operators, which we will use as foundation models for scientific machine learning tasks. Then, we will design two classes of ultra-fast meta-solvers for linear systems arising after discretizing PDEs by combining neural operators with either simple iterative solvers, e.g., Jacobi and Gauss-Seidel, or with Krylov methods, e.g., GMRES and BiCGStab, using the trunk basis of DeepONet as a coarse preconditioner. The idea is to leverage the spectral bias of neural networks to account for the lower part of the spectrum in the error distribution while the upper part is handled easily and inexpensively using relaxation methods or fine-scale preconditioners. We create a pareto front of optimal meta-solvers using a plurality of metrics, and we introduce a preference function to select the best solver most suitable for a specific scenario. This automation for finding optimal solvers can be extended to neural architectures for predicting time series as well as to nonlinear systems and other setups, e.g. finding the best meta-solver for space-time in time-dependent PDEs.