Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Foundation models for wireless communications and sensing или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
This talk presents the Large Wireless Model (LWM), the world’s first foundation model for wireless channels. Inspired by the success of foundation models in NLP, speech, and vision, LWM is a transformer-based model pre-trained in a self-supervised fashion on large-scale diverse wireless datasets. It learns rich, universal contextualized channel embeddings (features) that potentially enhance performance across a wide range of downstream tasks. I will present the model’s architecture, its self-supervised pre-training approach, and training datasets. I will also demonstrate its gains in tasks like sub-6GHz to mmWave beam prediction, LoS/NLoS classification, and localization. These gains highlight the LWM’s ability to learn from large-scale wireless data and enable complex machine learning tasks with limited data in wireless communication and sensing systems. Finally, we introduce an ITU AI/ML 5G competition which provides a modular setup, where participants can innovate on scenario design, feature extraction, and lightweight downstream models, pushing the frontiers of robustness, generalizability, and interpretability. By contributing improved scores and model refinements, the challenge also opens doors for discussion on formats, reproducible simulations, and alignment with 6G use cases. The outcomes are expected to influence real-world deployments, research reproducibility, and standard frameworks for wireless AI. AI for Good is identifying innovative AI applications, building skills and standards, and advancing partnerships to solve global challenges. AI for Good is organized by ITU in partnership with over 40 UN Sister Agencies and co-convened with the Government of Switzerland. Join the Neural Network! 👉https://aiforgood.itu.int/neural-netw... The AI for Good networking community platform powered by AI. Designed to help users build connections with innovators and experts, link innovative ideas with social impact opportunities, and bring the community together to advance the SDGs using AI. 🔴 Watch the latest #AIforGood videos! / aiforgood 📩 Stay updated and join our weekly AI for Good newsletter: http://eepurl.com/gI2kJ5 🗞Check out the latest AI for Good news: https://aiforgood.itu.int/newsroom/ 📱Explore the AI for Good blog: https://aiforgood.itu.int/ai-for-good... 🌎 Connect on our social media: Website: https://aiforgood.itu.int/ X: / aiforgood LinkedIn Page: / 26511907 LinkedIn Group: / 8567748 Instagram: / aiforgood Facebook: / aiforgood Disclaimer: The views and opinions expressed are those of the panelists and do not reflect the official policy of the ITU.