Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно The 5 levels of text splitting for retrieval или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Download 1M+ code from https://codegive.com/48112e3 okay, let's dive deep into the world of text splitting for retrieval-augmented generation (rag) and other natural language processing (nlp) tasks. we'll cover the 5 levels of text splitting, their strengths, weaknesses, and provide code examples using python and langchain. *understanding text splitting and its importance* before we jump into the levels, let's quickly recap why text splitting is so crucial: *context window limits:* large language models (llms) have limited input lengths (context windows). if you try to feed an entire book or a long document, it will likely exceed that limit. *relevance and efficiency:* passing irrelevant information to an llm dilutes the signal and increases computation time. we want to provide only the most relevant parts of a document. *retrieval accuracy:* when using retrieval-augmented generation (rag), you want to retrieve the most semantically meaningful chunks of text to provide context to the llm. splitting in the right way significantly impacts retrieval accuracy. *semantic coherence:* splitting must be done strategically so that resulting chunks remain semantically meaningful. cutting a sentence in half or splitting a paragraph in the middle of its explanation usually defeats the purpose. *the 5 levels of text splitting (and beyond)* here's a breakdown of the different levels, ranging from simple to more sophisticated techniques: 1. *character splitting* 2. *recursive character splitting* 3. *token splitting* 4. *semantic splitting* 5. *agentic splitting* let's explore each of these with examples: *level 1: character splitting* *concept:* splitting the text based on a fixed number of characters. this is the most basic approach. *pros:* simple to implement. *cons:* often leads to semantic breaks (splitting sentences or paragraphs mid-way), making the resulting chunks less meaningful. poor for retrieval accuracy. *when to use:* when sem ... #TextSplitting #InformationRetrieval #numpy text splitting retrieval techniques information retrieval data segmentation document processing text analysis content categorization query optimization semantic search indexing strategies retrieval models natural language processing machine learning data extraction user interaction