Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Michał Karzyński - Developing elegant workflows in Python code with Apache Airflow или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
"Developing elegant workflows in Python code with Apache Airflow [EuroPython 2017 - Talk - 2017-07-13 - Anfiteatro 1] [Rimini, Italy] Every time a new batch of data comes in, you start a set of tasks. Some tasks can run in parallel, some must run in a sequence, perhaps on a number of different machines. That's a workflow. Did you ever draw a block diagram of your workflow? Imagine you could bring that diagram to life and actually run it as it looks on the whiteboard. With Airflow you can just about do that. http://airflow.apache.org Apache Airflow is an open-source Python tool for orchestrating data processing pipelines. In each workflow tasks are arranged into a directed acyclic graph (DAG). Shape of this graph decides the overall logic of the workflow. A DAG can have many branches and you can decide which of them to follow and which to skip at execution time. This creates a resilient design because each task can be retried multiple times if an error occurs. Airflow can even be stopped entirely and running workflows will resume by restarting the last unfinished task. Logs for each task are stored separately and are easily accessible through a friendly web UI. In my talk I will go over basic Airflow concepts and through examples demonstrate how easy it is to define your own workflows in Python code. We'll also go over ways to extend Airflow by adding custom task operators, sensors and plugins. License: This video is licensed under the CC BY-NC-SA 3.0 license: https://creativecommons.org/licenses/... Please see our speaker release agreement for details: https://ep2017.europython.eu/en/speak...