Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно √(-1) Like You’ve Never Seen Before: A Recursive Approach или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
What if I told you that the square root of negative one isn’t just some mysterious symbol, but part of an infinite, self-referencing process? In this video, we take a deep dive into a "recursive formula" that reveals an "infinite continued fraction" for "√(-1)". We start with the "quadratic formula" to confirm that the square root of negative one is indeed "i", but then we go deeper—rewriting the equation in a way that keeps repeating itself. This process unveils an elegant "continued fraction", showing that imaginary numbers might be better understood as "dynamic, recursive processes" rather than fixed values. By the end of this video, you’ll see "√(-1) in a completely new way"! 🚀 Topics Covered: ✔️ Why √(-1) is usually defined as "i" ✔️ Solving for "i" using the "quadratic formula" ✔️ How to rewrite the equation in a "recursive form" ✔️ Deriving an "infinite continued fraction" for "√(-1)" ✔️ What this tells us about "imaginary numbers" 💡 What do you think? Could imaginary numbers be redefined using continued fractions? Let me know in the comments! 🔔 "Don’t forget to like and subscribe" for more deep math explorations! 🚀 #Math #ImaginaryNumbers #ContinuedFractions #Mathematics