Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Converting Character to Numeric in R using dplyr или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Disclaimer/Disclosure: Some of the content was synthetically produced using various Generative AI (artificial intelligence) tools; so, there may be inaccuracies or misleading information present in the video. Please consider this before relying on the content to make any decisions or take any actions etc. If you still have any concerns, please feel free to write them in a comment. Thank you. --- Summary: Learn how to convert character data to numeric in R using the dplyr package for efficient data manipulation and transformation tasks. Explore various functions and techniques to handle character-to-numeric conversions in your R data analysis workflows. --- When working with data in R, you often encounter situations where you need to convert character variables to numeric for further analysis or visualization. The dplyr package, a popular tool for data manipulation, offers several functions and methods to handle such conversions efficiently. In this article, we'll explore how to convert character data to numeric using dplyr. Using mutate() and as.numeric() One common approach to convert character variables to numeric in dplyr is by using the mutate() function along with as.numeric(). Here's how you can do it: [[See Video to Reveal this Text or Code Snippet]] In this example, the mutate() function adds a new column ages_numeric to the dataframe df, which contains the numeric representation of the character variable ages using as.numeric(). Handling Non-Numeric Characters However, using as.numeric() directly may lead to unexpected results if the character variable contains non-numeric characters, such as letters or special symbols. To handle such cases, you can use parse_number() from the readr package, which is often used in conjunction with dplyr: [[See Video to Reveal this Text or Code Snippet]] Here, parse_number() extracts the numeric components from the character variable ages, discarding any non-numeric characters. This ensures that only valid numeric values are converted. Dealing with Missing Values When converting character variables to numeric, it's essential to handle missing values appropriately. In R, missing values are represented by NA. You can use na.rm = TRUE within as.numeric() or parse_number() to remove NA values before conversion: [[See Video to Reveal this Text or Code Snippet]] In this example, na.rm = TRUE removes NA values from the ages variable before conversion. Conclusion Converting character variables to numeric is a common task in data analysis, and dplyr provides efficient tools to perform this transformation. By leveraging functions like mutate(), as.numeric(), and parse_number(), you can seamlessly handle character-to-numeric conversions in your R data manipulation workflows. Remember to handle non-numeric characters and missing values appropriately to ensure accurate conversions and maintain data integrity.