Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно R tutorial: Getting started with text mining? или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Learn more about text mining with R: https://www.datacamp.com/courses/intr... Boom, we’re back! You used bag of words text mining to make the frequent words plot. You can tell you used bag of words and not semantic parsing because you didn’t make a plot with only proper nouns. The function didn’t care about word type. In this section we are going to build our first corpus from 1000 tweets mentioning coffee. A corpus is a collection of documents. In this case, you use read.csv to bring in the file and create coffee_tweets from the text column. coffee_tweets isn’t a corpus yet though. You have to specify it as your text source so the tm package can then change its class to corpus. There are many ways to specify the source or sources for your corpora. In this next section, you will build a corpus from both a vector and a data frame because they are both pretty common.