Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Big Data | Top 35+ Most Important Questions | unit 1 to 5 | btech 6th Sem | Aktu или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
big data important questions big data most important questions big data big data aktu big data important questions aktu big data most important questions aktu big data aktu important questions big data important questions one shot big dataq unit 1 one shot big data unit 2 one shot big dataq unit 3 one shot big data unit 4 one shot big data unit 5 one shot big data unit 1 aktu big data unit 2 aktu big data unit 3 aktu big data unit 4 aktu big data unit 5 aktu Introduction to Big Data: Types of digital data, history of Big Data innovation, introduction to Big Data platform, drivers for Big Data, Big Data architecture and characteristics, 5 Vs of Big Data, Big Data technology components, Big Data importance and applications, Big Data features – security, compliance, auditing and protection, Big Data privacy and ethics, Big Data Analytics, Challenges of conventional systems, intelligent data analysis, nature of data, analytic processes and tools, analysis vs reporting, modern data analytic tools. Hadoop: History of Hadoop, Apache Hadoop, the Hadoop Distributed File System, components of Hadoop, data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, Hadoop Echo System. Map Reduce: Map Reduce framework and basics, how Map Reduce works, developing a Map Reduce application, unit tests with MR unit, test data and local tests, anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types, input formats, output formats, Map Reduce features, Real-world Map Reduce HDFS (Hadoop Distributed File System): Design of HDFS, HDFS concepts, benefits and challenges, file sizes, block sizes and block abstraction in HDFS, data replication, how does HDFS store, read, and write files, Java interfaces to HDFS, command line interface, Hadoop file system interfaces, data flow, data ingest with Flume and Scoop, Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures. Hadoop Environment: Setting up a Hadoop cluster, cluster specification, cluster setup and installation, Hadoop configuration, security in Hadoop, administering Hadoop, HDFS monitoring & maintenance, Hadoop benchmarks, Hadoop in the cloud Hadoop Eco System and YARN: Hadoop ecosystem components, schedulers, fair and capacity, Hadoop 2.0 New Features - NameNode high availability, HDFS federation, MRv2, YARN, Running MRv1 in YARN. NoSQL Databases: Introduction to NoSQL MongoDB: Introduction, data types, creating, updating and deleing documents, querying, introduction to indexing, capped collections Spark: Installing spark, spark applications, jobs, stages and tasks, Resilient Distributed Databases, anatomy of a Spark job run, Spark on YARN SCALA: Introduction, classes and objects, basic types and operators, built-in control structures, functions and closures, inheritance. Hadoop Eco System Frameworks: Applications on Big Data using Pig, Hive and HBase Pig - Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators, Hive - Apache Hive architecture and installation, Hive shell, Hive services, Hive metastore, comparison with traditional databases, HiveQL, tables, querying data and user defined functions, sorting and aggregating, Map Reduce scripts, joins & subqueries. HBase – Hbase concepts, clients, example, Hbase vs RDBMS, advanced usage, schema design, 09 advance indexing, Zookeeper – how it helps in monitoring a cluster, how to build applications with Zookeeper. IBM Big Data strategy, introduction to Infosphere, BigInsights and Big Sheets, introduction to Big SQL.