Русские видео

Сейчас в тренде

Иностранные видео




Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



What is a Delta Table?

In this video I will explain about the Delta tables. Delta tables are a new type of table in Databricks that provide a powerful and efficient way to work with big data. They are optimized for fast, read-intensive, large-scale data processing and are ideal for use cases such as data lakes. . =====⏱️Timestamps⏱️===== 00:00 Introduction. 00:30 What is Delta Table. 02:27 Contents. 03:28 Create Database in Data Lake. 03:48 Create Delta table using PySpark. 06:20 Create Delta table using Spark SQL. 09:00 Create Delta table using Data Frame. 11:08 Display Data of the Delta Table. 12:27 How to Describe Delta table. 12:45 How to Drop Delta table. 12:28 List the Delta Tables in the Database. 15:32 Rename the column in the Delta Table. 17:53 How to Rollback Delta Table into previous version. More Details:- Delta tables are a new type of table in Databricks that provide a powerful and efficient way to work with big data. They are optimized for fast, read-intensive, large-scale data processing and are ideal for use cases such as data lakes. A Delta table is essentially a versioned version of a data lake table that is stored as a collection of small data files in a hierarchical file system, rather than as a single monolithic file. This allows for fast, incremental processing and enables you to keep track of changes to the data over time. Delta tables also offer a number of other advantages over traditional data lake tables, such as: ACID transactions: Delta tables support ACID transactions, which allow you to update, delete, or insert data in a safe and consistent manner, even when multiple users are accessing the same data simultaneously. Data versioning: Delta tables automatically version each change to the data, so you can roll back to any previous version if necessary. Data management: Delta tables provide a number of built-in data management features, such as automatic data pruning and compaction, which help you keep your data lake organized and optimized for performance. Efficient queries: Delta tables are optimized for fast querying, even over large datasets. They also support predicate pushdown, which allows you to filter data at the storage layer before it is loaded into memory, making your queries faster and more efficient. Overall, Delta tables provide a powerful and flexible way to store, manage, and process big data in Databricks, and are a great choice for data lake use cases. =====THINGS YOU NEED TO KNOW!!!===== 🎥How to mount AZURE Data lake storage Gen2 container with Databricks:-    • How to mount AZURE Data lake storage Gen2 ...   🎥Read & Write Parquet file using Databrick and PySpark:-    • Read & Write Parquet file using Databrick ...   🎥How to create free account in Databricks Community Edition:-    • How to create free account in Databricks C...   🎥Ingest Data from Azure SQL Database : Databricks & Pyspark:-    • Ingest Data from Azure SQL Database : Data...   🎥Query AZURE SQL Server Database using Databricks & Pyspark:-    • Query AZURE SQL Server Database using Data...   =====SOCIAL===== 👥Facebook:   / datacafe4u   📶LinkedIn:   / datacafe4u   📸Instagram:   / datacafe4u   #databricks #machinelearning #datascience #DatabricksIngestDatafromAzureSQL #AzureSQLDatabaseDatabricks, #DatabricksAzureSQL, #DataricksAzureDatabase,#Databricksreaddbtable,#DatabricksReadDatabaseTable, #SparkReadSQLTable,#SparkIngestDBTable,#SparkIngestDataBaseTable,#PysparkIngestDataBaseTable,#SparkLoadfromDBTable,#SparkReadfromDatabase,#DatabricksReadfromDatabase, #DatabricksJDBC,#SparkJdbc, #PysparkJDBC,#DatabricksAzureSQL,#SparkAzureSQLDB,#SparkAzureSQLDatabase #PySparkAzureSQLDatabase #DatabricksTutorial, #DatabricksMergeStatement, #AzureDatabricks,#Databricks,#Pyspark,#Spark,#AzureDatabricks,#AzureADF #Databricks #LearnPyspark #LearnDataBRicks #DataBricksTutorial #Databricks,#Pyspark,#Spark,#AzureDatabricks,#AzureADF #Databricks #LearnPyspark #LearnDataBRicks #DataBricksTutorial #databrickssparktutorial,#databrickstutorial,#databricksazure #databricksnotebooktutorial,#databricksdeltalake,#databricksazuretutorial,#databrickstutorialforbeginners, #azuredatabrickstutorial,#databrickstutorial, #databrickscommunityedition,#databrickscommunityeditionclustercreation, #databrickscommunityeditiontutorial,#databrickscommunityeditionpyspark #databrickscommunityeditioncluster,#databrickspysparktutorial,#databrickscommunityeditiontutorial,#databrickssparkcertification,#databrickscli,#databrickstutorialforbeginners,#databricksinterviewquestions,#databricksazure #DeltaTable #Databricks #ApacheSpark #DataEngineering #DataIntegration #BigData #DataAnalytics #DataVisualization #DataProcessing #DataTransformation #ETL #DataLake #DataWarehouse #CloudComputing #PythonProgramming #DataQueries #DataSources #DataManagement #DataOps #DataPipeline

Comments