Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно How to Concatenate DataFrames in Pandas without Duplicates или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Learn how to effectively `concatenate` two DataFrames in Pandas while avoiding duplicate values. This step-by-step guide breaks down the process. --- This video is based on the question https://stackoverflow.com/q/73755806/ asked by the user 'Hertyuw' ( https://stackoverflow.com/u/17742118/ ) and on the answer https://stackoverflow.com/a/73755857/ provided by the user 'Quang Hoang' ( https://stackoverflow.com/u/4238408/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Concatenate dataframe to a master dataframe only if the the values do not exist in the master dataframe Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- Concatenating DataFrames in Pandas: Avoiding Duplicates When working with data in Python using the Pandas library, you often need to combine multiple DataFrames. However, there can be situations where you want to ensure that certain values do not end up duplicated in your master DataFrame. This guide is going to explore how you can concatenate two DataFrames while excluding any rows from the second DataFrame that have values already present in the first one. The Problem Let’s consider a practical example. Imagine you have two DataFrames, Df1 and Df2. Df1 already contains some data, but Df2 may contain overlapping values that you want to avoid including in your final DataFrame. Here are the two DataFrames for reference: Df1: [[See Video to Reveal this Text or Code Snippet]] Df2: [[See Video to Reveal this Text or Code Snippet]] You want to concatenate Df2 to Df1, but you only want to include rows from Df2 where the 'Batch' does not exist in Df1. In this case, you only want to include the 'D' batches from Df2 in Df1. The Solution To achieve this, you can use the pandas function concat() along with a filtering technique using the isin() method. The steps will be laid out clearly below. Step-by-Step Solution Import the Pandas Library: Make sure you have imported Pandas in your Python environment. [[See Video to Reveal this Text or Code Snippet]] Create Your DataFrames: Define your DataFrames Df1 and Df2. [[See Video to Reveal this Text or Code Snippet]] Filter Df2: Remove rows from Df2 where the 'Batch' exists in Df1. This is accomplished with the isin() function. [[See Video to Reveal this Text or Code Snippet]] ~ symbol is used to invert the boolean values. Concatenate DataFrames: Now, you can concatenate Df1 with the filtered Df2. [[See Video to Reveal this Text or Code Snippet]] View the Result: Finally, print or display your concatenated DataFrame. [[See Video to Reveal this Text or Code Snippet]] The Final Output After executing the above steps, your final DataFrame will look like this: [[See Video to Reveal this Text or Code Snippet]] As you can see, only the non-duplicate batches from Df2 got concatenated to Df1, resulting in a clean and efficient DataFrame. Conclusion By following the steps outlined above, you can easily concatenate DataFrames in Pandas while ensuring that you don’t introduce duplicate entries. This method is particularly useful for data cleaning and ensures that your datasets remain unique and well-structured. Feel free to reach out with any questions or additional topics you’d like to explore in data manipulation with Pandas!