Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Complex Numbers Loci Exam Question | EDEXCEL A-level Further Maths или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
In this detailed walkthrough, I solve a challenging complex numbers loci exam question, showing how to sketch loci on an Argand diagram and calculate the area of a complex region. This systematic approach helps students tackle one of the trickiest topics in A-level Further Mathematics. ⏱️ TIMESTAMPS: 00:00 - Introduction to complex number loci 00:25 - Identifying the equation of a circle (Part A) 01:17 - Sketching the circle on an Argand diagram 01:24 - Understanding the half-line argument condition (Part B) 02:36 - Shading the region defined by the intersection 03:14 - Approach to finding the area of the region (Part C) 04:02 - Breaking down the region into simpler parts 04:54 - Finding dimensions using coordinate geometry 05:54 - Calculating the angle using trigonometry 06:38 - Finding the area of the sector 07:23 - Calculating the area of the triangle 07:52 - Adding the quarter circle area 08:24 - Determining the total area of region A 📝 TOPICS COVERED: Interpreting complex number equations as loci on the Argand diagram Recognising |z-z₀| = r as the equation of a circle Understanding arg(z-z₀) conditions as rays from a point Finding the intersection of circular and argument loci Breaking down complex regions into manageable parts Using right-angled triangle properties in the complex plane Calculating sector areas using the formula ½r²θ Combining different area calculations for a complete solution 💯 EXAM TIPS: Always start by identifying the standard forms of loci equations Draw clear, labelled diagrams showing all key points and values Break complex regions into simpler geometric shapes when calculating areas Remember to work in radians when dealing with sector areas Use the Pythagorean theorem to find missing dimensions Check that your final answer has appropriate units (square units for area) Ensure your final answer is expressed to the required degree of accuracy As a former Head of Mathematics and A-Level Examiner, I've designed this explanation to help you tackle one of the most challenging topics in Further Mathematics with confidence. Questions about this topic? Leave a comment below, and I'll respond personally. Ready to transform your mathematical potential? Visit www.gufficktuition.com to learn about our personalised tutoring programmes. #GuffickTuition #FurtherMaths #ComplexNumbers #ArgandDiagram #Loci #EdexcelMaths #ALevelFurtherMaths #MathsRevision #ComplexLoci #AreaCalculation