Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ycliper.com Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Build and Deploy an End-To-End Modular RAG Medical AI Assistant using LangChain, Pinecone, FastAPI или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
In this video, I’ll show you how to build a Medical Assistant Chatbot using a full-stack RAG (Retrieval-Augmented Generation) pipeline! This project combines powerful tools like LangChain, Pinecone, Google Embeddings, and Groq’s LLaMA 3 to create an intelligent, domain-specific chatbot that answers medical queries using real PDF documents. 🔍 What You’ll Learn: 📥 Upload & process medical PDFs ✂️ Chunking & embedding with LangChain 🧠 Semantic search with Pinecone 🤖 Response generation using Groq LLaMA3-70B ⚙️ Backend with FastAPI 🌐 Deployment on Render 🛠️ Tools Used: LangChain Groq (LLaMA3-70B) Pinecone Vector DB Google Generative AI Embeddings FastAPI Render 📁 Project Source Code: 🔗 GitHub: https://github.com/snsupratim/medical... Chapters : 00:00 - Intro 00:32 - Demo 03:24 - Chapter 1 (RAG Concept) 06:21 - Chapter 2 (Technical Architecture & Core Modules ) 08:48 - Chapter 3 (Prerequisite, Setup & Installation ) 14:20 - Chapter 4 (Server-side Programming ) 01:34:50 - Chapter 5 (Client-side Programming ) 02:01:35 - Chapter 6 (Deployment ) #LangChain #RAG #MedicalAI #LLM #Pinecone #FastAPI #Groq #Chatbot #AIChatbot #HealthcareAI 🎓 Want to learn RAG from scratch? Subscribe for more AI app tutorials & hands-on LLM projects!