Из-за периодической блокировки нашего сайта РКН сервисами, просим воспользоваться резервным адресом:
Загрузить через dTub.ru Загрузить через ClipSaver.ruУ нас вы можете посмотреть бесплатно Line Chart Matplotlib || Lesson 3.3 || Python for Data Science || Learning Monkey || или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Роботам не доступно скачивание файлов. Если вы считаете что это ошибочное сообщение - попробуйте зайти на сайт через браузер google chrome или mozilla firefox. Если сообщение не исчезает - напишите о проблеме в обратную связь. Спасибо.
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса savevideohd.ru
Line Chart Matplotlib In this class, We discuss Line Chart Matplotlib. The reader should have prior knowledge of the bar chart. Click here. We use the superstore data set. The data set is discussed in our previous class. Line Chart Matplotlib A line chart is a graphical representation used in connecting a series of data points with a continuous line. In our data set, we use a line chart to display year-wise total sales. With this continuous line, we will understand how sales are going in the last ten years. To get the year-wise sale details, we use the column order date. The column order date is of type DateTime in pandas. We need to extract the year from the date. The methods used to extract the year from the date are discussed here. The program to extract the year from the date and placing in a new column is given below. df=pd.read_excel('sampledata.xls',sheet_name='Orders') print(df.head()) df['year'] = df[;'Order Date'].dt.year print(df.head()) grouping sales year wise temp=pd.DataFrame(df.groupby(['year'])['Sales'].agg('sum')) print(temp) x=temp.index y=temp['Sales'].values print(x) Simple Line Plot To construct a line plot, we use the method plot from matplotlib.pyplot. In the example, we use year on the x-axis and total year-wise sales on the y-axis. The variable x contains years, and the variable y contain total sales. We use the parameter color to give the line color. The simple line chart code and output are shown below. line plot code import matplotlib.pyplot as plt z=plt.figure(num=1,figsize=(10,5)) plt.plot(x, y, color ='blue') plt.xticks(x) plt.xlabel("Year") plt.ylabel("Sum of sale") plt.title("Year Wise Total Sale") plt.show() Multiple Lines We can plot multiple lines in a graph. We consider a total sale and furniture sale year-wise to plot multiple lines. Below is the code to show multiple lines. plot Multiple lines we are taking furniture sale year wise to plot temp1=pd.DataFrame(df.groupby(['year','Category'])['Sales'].agg('sum')) print(temp1) x1=temp1.index print(x1) temp2=temp1.xs('Furniture', level='Category') print(temp2) y1=temp2['Sales'].values print(y1) Multiple line plot code import matplotlib.pyplot as plt z=plt.figure(num=1,figsize=(10,5)) plt.plot(x, y, color ='blue') plt.plot(x,y1,color='red') plt.xticks(x) plt.xlabel("Year") plt.ylabel("Sum of sale") plt.title("Year Wise Total Sale") plt.legend(['Total','Furniture'],loc=0) plt.show() We notice the furniture sale line is almost flat. By looking at the output of multiple line charts We are not having clarity about the exact sale value because the y-axis unit measure is large. We can change the unit measure of the y-axis using yticks. We discuss how to change units in our next class. We used the plot function multiple times to plot the line chart twice. Line Width Parameter We use the line width parameter to increase or decrease the line width. The below code will increase the line width of the total sale. Line width and line style import matplotlib.pyplot as plt z=plt.figure(num=1,figsize=(10,5)) plt.plot(x, y, color ='blue',linewidth=4) plt.plot(x,y1,color='red',linestyle=':')#for dash line use -- plt.xticks(x) plt.xlabel("Year") plt.ylabel("Sum of sale") plt.title("Year Wise Total Sale") plt.legend(['Total','Furniture'],loc=0) plt.show() Short cuts and Markers We can show dotted lines, dashed lines, etc. Short cuts are used to show the line options. Markers are used to mark the data point of our data. Marker o is used to mark circles at the data point. The marker s is used to mark the square at the data point. The color, line type, and marker is shown using a shortcut in the plot method. The below code shows the shortcuts and markers used in the plot method. Short cuts and Markers import matplotlib.pyplot as plt z=plt.figure(num=1,figsize=(10,5)) plt.plot(x, y, 'b-o') plt.plot(x,y1,'r--s') plt.xticks(x) plt.xlabel("Year") plt.ylabel("Sum of sale") plt.title("Year Wise Total Sale") plt.legend(['Total','Furniture'],loc=0) plt.show() Below showing some of the markers used in python. The reader should try these markers for better practice. Few Marker shapes supported by matplotlib Link for playlists: / @learningmonkey Link for our website: https://learningmonkey.in Follow us on Facebook @ / learningmonkey Follow us on Instagram @ / learningmonkey1 Follow us on Twitter @ / _learningmonkey Mail us @ [email protected]